Schlagwortarchiv für: Datenstrategie

Warum es nicht reicht, einfach nur einen Data Scientist einzustellen

Auch wenn das Jahr 2023 vielversprechend klingt, als ob wir in der Zukunft angekommen wären, so tappen die meisten deutschen Unternehmen hinsichtlich eines Fahrplans in Richtung Künstliche Intelligenz (KI) und Data-Driven Thinking zumeist im Dunkeln. Es fehlt oft immer noch eine Datenstrategie, die einem Unternehmen und seinen Stakeholdern klar ausweist, wohin die Reise gehen soll.

Ein Senior Data Scientist alleine wird Ihre Probleme nicht lösen

Während noch vor wenigen Jahren oft davon gesprochen wurde, Data Science als Disziplin im Unternehmen zu etablieren und Data Scientists einzustellen, verfügen heute tatsächlich die meisten Großunternehmen und auch viele Mittelständler über eigene Data Scientists, die tatsächlich dediziert für den Zweck der Datenanalyse eingestellt wurden.

Der hohen Datenkompetenz qualifizierter Data Scientists zum Trotz, stellen Unternehmen oft Ernüchterung bei der Wirkung dieser Fachkräfte fest. Zum einen, weil gute Data Engineers fehlen, die Daten effizient in Datenbanken sammeln und effektiv über Schnittstellen bereitstellen können, zum anderen, weil diese Data Scientists seitens des Managements allein gelassen werden. Hier herrscht möglicherweise das Denken vor, Data Science wäre ein in sich abgeschlossener Bereich der angewandten Forschung, anstatt diese richtigerweise als interdisziplinäre Querschnittsfunktion für alle anderen Fachabteilungen zu betrachten. Selbst der beste Data Scientist bewirkt im Unternehmen nichts, wenn seine Arbeit auf Grund von mangelnder Offenheit zur Umsetzung der errungenen Erkenntnisse keine Chance auf Umsetzung bzw. Nutzung der Potenziale hat. Auch motivierte Data Scientists können nur für begrenzte Zeit gegen den Strom schwimmen.

Datenkompetenz unternehmensweit verankern

Auch haben Data Scientists die Datenkompetenz nicht für sich allein gepachtet, denn alle anderen fachlichen Mitarbeiter sollten ebenfalls zumindest über ein Grundverständnis über die Möglichkeiten mit Daten verfügen. Zentrale Stellen wie Abteilungen für die etwas konservativere Business Intelligence oder den experimentierfreudigeren Data Labs kommen zum einen ohne Expertise aus den jeweiligen Fachbereichen nicht aus, spätestens dann, wenn es um die Produktivstellung von Analyse-Systemen geht. Zum anderen entstehen die wirklich sinnvollen Lösungsansätze nicht an zentraler Stelle, sondern direkt in den speziellen Fachbereichen, in denen diese relevant werden. Kein Unternehmen dieser Welt wird ganz alleine dank einer zentralen Abteilung data-driven, sondern diese Entwicklung muss aus dem ganzen Unternehmen heraus entstehen und dann auch ganzheitlich zusammenwachsen.

Durchaus vergleichbar wie das fachliche Verständnis und das Gespür für Kosteneffizienz, Verschwendungsvermeidung oder Umweltschutz, benötigen Unternehmen heute eine generelle Datenkompetenz, nicht nur bei den Fachkräften, sondern auch bei den Führungskräften, die für lösungsorientiertes Denken eintreten, dieses fordern und fördern müssen – stets im Bewusstsein, welche Rolle Daten dabei spielen können.

 

Über Connected Industry e.V.

Connected Industry e.V. LogoConnected Industry ist der Verband für Unternehmen und Experten im Kontext der Industrie 4.0 mit allen zugehörigen Themengebieten. Wir bringen Maschinen, Industrien und vor allem Menschen zusammen, um gemeinsam die vierte industrielle Revolution voranzubringen. Interessiert an einer Mitwirkung? Dann freuen wir uns auf Ihre Nachricht!

Digitalstrategie und Datenstrategie

Warum Sie nur eventuell eine Digitalstrategie benötigen, ganz sicher aber eine Datenstrategie.

Da Digital und Data nicht dasselbe sind, unterscheiden Pionier-Unternehmen ganz klar zwischen einer Digitalstrategie und einer Datenstrategie, so gibt es beispielsweise auch Digital Labs und Data Labs innerhalb desselben Konzerns. Während das Digital Lab sich vornehmlich mit Themen wie Software-Entwicklung für mobile Anwendungen, Social Media, Blockchain oder Internet of Things (IoT) befasst, beschäftigt sich ein Data Lab mit der Speicherung und Analyse von den Daten aus der klassischen IT-Infrastruktur sowie aus den neu gewonnen Anwendungen der Digitalisierung mit Fachkräften wie dem Data Engineer und Data Scientist.

Ähnlich lassen sich auch Digital- und Datenstrategien voneinander abgrenzen. Die Digitalstrategie befasst sich beispielsweise damit, wie Services über mobile Anwendungen verbessert oder Produkte wie Fahrzeuge oder Maschinen mit mehr Sensoren und Displays ausgestattet werden können. Die Datenstrategie befasst sich hingegen mit der effizienten Speicherung der Daten, der Einhaltung einer Data Governance unter Berücksichtigung von Datensicherheit und Datenschutz sowie mit den analytischen Methoden und Tools zur Erreichung der Ziele, die mit der Nutzung der generierten Daten verbunden ist.

Das heißt jedoch nicht, dass die Datenstrategie nicht ein eigener Teil inner- bzw. unterhalb einer Digitalstrategie sein kann.

Daten sind der Grundstein für Informationen und Wissen für Geschäftsoptimierung und neue Geschäftsmodelle, wenn sie über Data Analytics bzw. Data Science in jenes Wissen transformiert werden.

Daten sind der Grundstein für Informationen und Wissen für Geschäftsoptimierung und neue Geschäftsmodelle, wenn sie über Data Analytics bzw. Data Science in jenes Wissen transformiert werden.

Für Enterprise-KI ist die Datenstrategie ist das A und O

Data-Driven Thinking im Unternehmen in Common Sense zu verwandeln ist ein langfristiges Projekt. Um dennoch bereits heute strukturiert in die Datennutzung einsteigen bzw. diese vertiefen zu können, bedarf es eines Fahrplans für kommende Projekte mit Problem-Lösungsbeschreibungen. Dabei sollen die zu erreichenden Ziele festgelegt, die richtigen Datenquellen und Analysemethoden identifiziert sowie Fragen über die einzusetzende Software, Hardware und der Teamorganisation und notwendiger Qualifikationen geklärt werden. Data Analytics im Generellen und künstliche Intelligenz im Speziellen benötigen viele Daten in guter Qualität an den richtigen Stellen. Eine Datenstrategie arbeitet genau auf diese Ziele hin und kann somit auch als ein Business Plan für die Datennutzung betrachtet werden, in welchem auch die Ziele und Voraussetzungen für diese Nutzung, sowie weitere Anforderungen, Grenzen und Vorgehen beschrieben werden.

Datenstrategie in fünf Schritten: Ableitung der Ziele aus der Vision, Auswahl der relevanten Daten, Auswahl an Analyseverfahren zur Informationsgewinnung, Konzeptionierung der Wissensgenerierung, wie diese Analyseverfahren durch die Mitarbeiter genutzt werden können und Planung der Umsetzung der vier vorherigen Schritten.

Datenstrategie in fünf Schritten: Ableitung der Ziele aus der Vision, Auswahl der relevanten Daten, Auswahl an Analyseverfahren zur Informationsgewinnung, Konzeptionierung der Wissensgenerierung, wie diese Analyseverfahren durch die Mitarbeiter genutzt werden können und Planung der Umsetzung der vier vorherigen Schritten.

Die Möglichkeiten der Datennutzung sind in Zeiten des Internets nahezu unbegrenzt, wenn der Gedanke an den Zugriff auf unternehmensexterne Datenquellen in die Datenstrategie aufgenommen wird. Doch bereits mittelständische Unternehmen verfügen längst über einen großen Schatz an Daten aus unternehmensinternen Quellen, mit denen sich Einkaufsprozesse und Lieferketten optimieren, Kundennachfragen besser verstehen und auch interne Finanzrisiken besser bewerten lassen – dank der bereits erwähnten Digitalisierung.

Dabei ist eine Datenstrategie nicht nur für große Unternehmen interessant, gerade Startups bauen ihr Business Model vielfach direkt auf Daten und KI auf. Demzufolge benötigen Unternehmen, die sowieso rein digital oder erst kürzlich beispielsweise als FinTech oder eCommerce gestartet sind, eine Datenstrategie. Diese ist für jedes Unternehmen unerlässlich, denn es verfügt potenziell bereits über viele wertvolle Daten und kann diese darüber hinaus auch mit externen Daten anreichern.

Während für einige Unternehmen Digitalstrategien weniger notwendig sind, da das Geschäft bereits als eCommerce meistens schon direkt auf digitalen Plattformen gegründet wurde, gilt diese oftmals nicht für Unternehmen der klassischen Industrie, die unter dem Leitziel der Industrie 4.0 die Digitalisierung gerade insbesondere durch Maschinenvernetzung und engere Einbindung der Maschinen an die IT-Systeme (insbesondere ERP, MES und PLM) sehr viel intensiver erleben. Diese Unternehmen benötigen eine klar ausformulierte Strategie wie diese Digitalisierung und die mit ihr verbundenen digitalen Transformation bewältigt und vorangetrieben werden soll. Die Datenstrategie, die beispielsweise Fragen beantwortet, wie die Maschinendaten gespeichert und ausgewertet werden sollen, ist dann entweder als Strategiewerk auszugliedern oder als konkreten Unterteil der Digitalstrategie zu verstehen – die Datenstrategie wird dann konkreter Bestandteil einer größer angelegten Digitalstrategie sein.

Über Connected Industry e.V.

Connected Industry e.V. LogoConnected Industry ist der Verband für Unternehmen und Experten im Kontext der Industrie 4.0 mit allen zugehörigen Themengebieten. Wir bringen Maschinen, Industrien und vor allem Menschen zusammen, um gemeinsam die vierte industrielle Revolution voranzubringen. Interessiert an einer Mitwirkung? Dann freuen wir uns auf Ihre Nachricht!

Digital ist nicht Data

Viele Fach- und Führungskräfte unterscheiden nicht zwischen einer Digital- und einer Datenstrategie, dabei sind Digital und Data nicht dasselbe.

Digitalisierung läuft seit Jahrzehnten

Die Digitalisierung ist eigentlich bereits ein alter Hut und feierte ihre ersten Hochphasen in den 1990er Jahren mit der Etablierung von ERP-Software, Webseiten, E-Mail und Scannern mit Texterkennung. Die Digitalisierung ist ein langwieriger Prozess, der bis heute anhält, ihren aktuellen Schwung der Einführung von mobilen Anwendungen (Apps), dem Einsatz der Blockchain oder der Vernetzungen von Dingen (Internet of Things) verdankt. Diese Technologien treiben die Digitalisierung voran – so werden Logistikprozesse in naher Zukunft von autonomen Drohnen umgesetzt, Verträge über die Blockchain abgewickelt und jegliche Verkäufe über mobile Applikationen ausgelöst oder zumindest bezahlt. Es sind Themen vor allem für Software-Entwickler und Ingenieure, angeführt vom sogenannten Chief Digital Officer. Sie entwickeln die Digitalen Produkte und Prozesse weiter, dabei werden Prozesse in der Regel sinnvollerweise nicht 1:1 von analog in digital übersetzt, sondern bestenfalls ganz neu gedacht. Daraus folgt die digitale Transformation, die dafür sorgt, dass Prozesse neue innovative Gestaltungen finden und auch, dass es zukünftig kaum noch Reisebüros oder Kassierer geben könnte. Die Blockchain wird vermutlich die Bedeutung von Notaren reduzieren und auch Makler werden dank mobiler Anwendungen, Augmented und Virtual Reality weniger benötigt werden. Beinahe jegliche menschliche Vermittler sind über digitale Services weitgehend ersetzbar.

Data vs Digital

Der Digital- und Data-Kreislauf. Digitale Produkte generieren Daten, die genutzt werden können, um die digitalen Produkte zu verbessern.

Trends, die unter Namen wie Big Data, Analytics, Data Science oder KI fallen, bezeichnen hingegen nicht die Generierung, sondern die Nutzung von Daten, die von den digitalen Systemen erst geschaffen werden. Die Daten einer Blockchain, von mobilen Apps und die von autonomen Drohnen oder Fahrzeugen usw. werden in Datenbanken gespeichert und warten nur darauf, ausgewertet zu werden. Die Erkenntnisse aus der Datennutzung werden den digitalen Systemen dann in Echtzeit beispielsweise als Prognose-Service bereitgestellt oder dienen als Erkenntnis darüber, welche Verbesserungen an den digitalen Produkten sinnvoll sein können. Daten und KI werden in Zukunft die Buchhaltung übernehmen, medizinische Diagnosen stellen und autonome Fahrzeuge im Straßenverkehr steuern.

Digital und Data sind nicht dasselbe

Digital und Data sind folglich nicht dasselbe, sie überlappen sich sogar weniger als auf den ersten Blick zu erwarten, stehen jedoch in Abhängigkeit zueinander: So sind Analysen z. B. über Einkaufs- oder Kundenbestellungen ein Data-Thema jedoch nur möglich, weil das Unternehmen mit der Einführung eines ERP-Systems grundlegend digital wurde. Die Erkenntnisse aus der Nutzung von Data fließen dann wieder in die Produktverbesserung von Digital ein, z. B. durch Anpassung der ERP-Konfiguration.

Data ist also der zweite Schritt nach Digital und fügt den digitalen Prozessen ein Gedächtnis und ein maschinelles Lernen hinzu, woraus die Künstliche Intelligenz resultiert, deren weitere Entwicklung das begonnene neue Jahrzehnt dominieren – und vermehrt operative Entscheidungen in Unternehmen übernehmen wird.

Über Connected Industry e.V.

Connected Industry e.V. LogoConnected Industry ist der Verband für Unternehmen und Experten im Kontext der Industrie 4.0 mit allen zugehörigen Themengebieten. Wir bringen Maschinen, Industrien und vor allem Menschen zusammen, um gemeinsam die vierte industrielle Revolution voranzubringen. Interessiert an einer Mitwirkung? Dann freuen wir uns auf Ihre Nachricht!